Перевод: с русского на все языки

со всех языков на русский

process step

  • 41 модульный центр обработки данных (ЦОД)

    1. modular data center

     

    модульный центр обработки данных (ЦОД)
    -
    [Интент]

    Параллельные тексты EN-RU

    [ http://loosebolts.wordpress.com/2008/12/02/our-vision-for-generation-4-modular-data-centers-one-way-of-getting-it-just-right/]

    [ http://dcnt.ru/?p=9299#more-9299]

    Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.

    В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.

    At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.

    В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.

    Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.

    Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.

    Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.

    Was there a key driver for the Generation 4 Data Center?

    Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
    Был ли ключевой стимул для разработки дата-центра четвертого поколения?


    If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.

    Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.

    One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:

    The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.

    Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:

    Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.

    The second worst thing we can do in delivering facilities for the business is to have too much capacity online.

    А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.

    This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
    So let’s take a high level look at our Generation 4 design

    Это заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
    Давайте рассмотрим наш проект дата-центра четвертого поколения

    Are you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.

    It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.

    From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.


    Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:

    Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.

    С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.

    Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.


    Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.

    For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.

    Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.

    Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.

    Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.

    Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.

    Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
    Мы все подвергаем сомнению

    In our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.

    В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
    Серийное производство дата центров


    In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.

    Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
    Невероятно энергоэффективный ЦОД


    And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?

    А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
    Строительство дата центров без чиллеров

    We have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.

    Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.

    By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.

    Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.

    Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.

    Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
    Gen 4 – это стандартная платформа

    Finally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.

    Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
    Главные характеристики дата-центров четвертого поколения Gen4

    To summarize, the key characteristics of our Generation 4 data centers are:

    Scalable
    Plug-and-play spine infrastructure
    Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
    Rapid deployment
    De-mountable
    Reduce TTM
    Reduced construction
    Sustainable measures

    Ниже приведены главные характеристики дата-центров четвертого поколения Gen 4:

    Расширяемость;
    Готовая к использованию базовая инфраструктура;
    Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
    Быстрота развертывания;
    Возможность демонтажа;
    Снижение времени вывода на рынок (TTM);
    Сокращение сроков строительства;
    Экологичность;

    Map applications to DC Class

    We hope you join us on this incredible journey of change and innovation!

    Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.


    Использование систем электропитания постоянного тока.

    Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!

    На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.

    So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.

    Generations of Evolution – some background on our data center designs

    Так что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
    Поколения эволюции – история развития наших дата-центров

    We thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.

    Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.

    It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.

    Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.

    We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.

    Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.

    No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.

    Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.

    As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.

    Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.

    This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.

    Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.


    Тематики

    Синонимы

    EN

    Русско-английский словарь нормативно-технической терминологии > модульный центр обработки данных (ЦОД)

  • 42 ступенями

    Русско-английский научно-технический словарь переводчика > ступенями

  • 43 одноступенчатый

    1) General subject: one stage, one-stage
    2) Aviation: single-staged
    3) Mathematics: single-stage
    4) Physics: one-step
    5) Information technology: single-step
    6) Oil: singlestage
    7) Mechanic engineering: single-train (о коробке передач, редукторе)
    11) Combustion gas turbines: single stage, single-stage (о компрессоре, турбине)

    Универсальный русско-английский словарь > одноступенчатый

  • 44 стадия производственного процесса

    Универсальный русско-английский словарь > стадия производственного процесса

  • 45 аппаратура

    apparatus, gear, installation, outfit, technology
    * * *
    аппарату́ра ж.
    1. apparatus, equipment, gear; ( приборы) instrumentation (см. тж. система)
    дораба́тывать аппарату́ру — update equipment or a system
    обеспе́чивается по́лное резерви́рование аппарату́ры — there is full redundancy of all equipment
    оснаща́ть аппарату́рой (для …) — equip (for …)
    аппарату́ра по́лностью резерви́рована — there is full redundancy of all equipment
    резерви́ровать аппарату́ру
    1. ( обеспечивать резервирование) provide redundancy in the equipment, use duplicate items of equipment
    2. ( переходить на резерв) change over to a stand-by equipment
    сопряга́ть аппарату́ру — gang up one type of equipment with another, provide interfacing between, e. g., equipment A and equipment B
    абоне́нтская аппарату́ра тлф.брит. subscriber's apparatus; амер. (telephone) station apparatus, telephone station (apparatus)
    авари́йно-спаса́тельная аппарату́ра — ( используемая экипажем или пассажирами) survival equipment; ( используемая спасателями) (search-and-)rescue equipment
    аэрофотосъё́мочная аппарату́ра — aerial photography [aerial surveying] equipment
    аппарату́ра бди́тельности ( в поездной авторегулировке) — acknowledger
    бортова́я аппарату́ра — ( для самолёта) airborne equipment; ( для корабля) ship-borne equipment; ( для любого средства передвижения) vehicle-borne equipment
    гидроакусти́ческая аппарату́ра — брит. asdic equipment; амер. sonar equipment
    голографи́ческая аппарату́ра — holographic equipment
    горноспаса́тельная аппарату́ра — mine rescue apparatus
    аппарату́ра громкоговоря́щей свя́зи — public-address equipment
    дальноме́рная аппарату́ра — range instrumentation, range-finding equipment
    двухчасто́тная аппарату́ра тлф. — dual-frequency [two-frequency] equipment
    аппарату́ра диспе́тчерского управле́ния — supervisory control apparatus
    аппарату́ра для вычисле́ний с удво́енной то́чностью — double-precision hardware
    дыха́тельная аппарату́ра ( горноспасательная) — breathing apparatus
    запасна́я аппарату́ра — reserve [stand-by] equipment (не путать с аппарату́рой резерви́рования)
    аппарату́ра за́писи на магни́тную ле́нту — magnetic-type recording equipment
    аппарату́ра звуковоспроизведе́ния — sound-reproducing equipment
    звукозапи́сывающая аппарату́ра — sound-recording equipment
    звукоприё́мная аппарату́ра тлв.sound-pick-up equipment
    аппарату́ра индивидуа́льного преобразова́ния (для в. ч. телефонии) — channel equipment (for carrier telephony)
    индика́торная аппарату́ра рлк. — display [presentation] equipment
    испыта́тельная аппарату́ра — test equipment, test gear
    аппарату́ра иссле́дования ве́рхних слоё́в атмосфе́ры — upper atmosphere instrumentation
    кинокопирова́льная аппарату́ра — motion-picture printing equipment
    киноосвети́тельная аппарату́ра — set lighting equipment
    кинопроекцио́нная аппарату́ра — motion-picture projection equipment
    киносъё́мочная аппарату́ра — filming equipment
    кислоро́дная аппарату́ра — oxygen equipment
    коммутацио́нная аппарату́ра тлф.switching equipment
    коммутацио́нная аппарату́ра ша́говой систе́мы тлф.step-by-step switching equipment
    контро́льно-измери́тельная аппарату́ра — instrumentation; ( для проверок и испытаний) test equipment, test gear
    оснаща́ть контро́льно-измери́тельной аппарату́рой — instrument
    контро́льно-измери́тельная аппарату́ра для биологи́ческих иссле́дований — bioinstrumentation
    контро́льно-измери́тельная, технологи́ческая аппарату́ра — process instrumentation
    контро́льно-измери́тельная, электро́нная аппарату́ра — electronic instrumentation
    аппарату́ра контро́ля — monitoring equipment
    ла́зерная аппарату́ра — laser equipment
    лине́йная аппарату́ра тлф.line equipment
    микроголографи́ческая аппарату́ра — holomicrographic equipment
    микрофотографи́ческая аппарату́ра — photomicrographic equipment
    аппарату́ра набо́ра но́мера тлф.dialling equipment
    назе́мная аппарату́ра — ground(-based) equipment
    аппарату́ра на транзи́сторах — transistorized equipment
    нау́чная аппарату́ра — experimental gear
    неспаса́емая аппарату́ра — non-recoverable [non-retrievable] equipment
    аппарату́ра обрабо́тки да́нных — data-processing equipment
    оконе́чная аппарату́ра — terminal (equipment)
    опознава́тельная аппарату́ра ав., косм.identification equipment
    опро́сная аппарату́ра тлф.answering equipment
    аппарату́ра опти́ческой звукоза́писи — optical [photographic] sound-on-film recording apparatus, optical [photographic] sound-on-film recording equipment
    аппарату́ра ориента́ции косм.attitude-control equipment
    аппарату́ра переда́чи да́нных — data transmission equipment
    аппарату́ра переда́чи соедине́ния тлф.transfer equipment
    аппарату́ра предупреди́тельной сигнализа́ции — warning apparatus
    аппарату́ра предупрежде́ния столкнове́ния ( в воздухе или на море) — anti-collision [collision-warning] equipment
    приводна́я аппарату́ра навиг.homing facilities
    приё́мная аппарату́ра — receiving equipment
    прове́рочная аппарату́ра — test equipment, test gear
    аппарату́ра радиопротиводе́йствия — electronic countermeasures [ECM] equipment
    радиореле́йная аппарату́ра — microwave-link [radio-relay] equipment
    радиотелеметри́ческая аппарату́ра — telemetry [telemetering] equipment
    аппарату́ра разделе́ния кана́лов — demultiplexer
    аппарату́ра распредели́тельных устро́йств — switchgear components, switchgear devices
    аппарату́ра регули́рования — control equipment
    аппарату́ра резерви́рования
    2. ( для осуществления перехода на резерв) change-over [throw-over] control (facility)
    резе́рвная аппарату́ра — reserve [stand-by] equipment (не путать с аппарату́рой резерви́рования)
    самолё́тная аппарату́ра — airborne equipment
    светосигна́льная аппарату́ра — light signalling equipment
    аппарату́ра свя́зи — communication(s) equipment
    аппарату́ра свя́зи двукра́тного уплотне́ния — double-multiplex equipment
    сери́йно выпуска́емая аппарату́ра — production-run [stock-produced] equipment
    сигнализацио́нная аппарату́ра — signalling apparatus
    аппарату́ра систе́мы обнаруже́ния ав., косм.detection equipment
    аппарату́ра сопряже́ния
    2. ( сопряжённая) associated equipment; dependent equipment
    аппарату́ра спу́тниковой свя́зи — satellite-communication equipment
    стереофони́ческая аппарату́ра — stereo sound equipment
    аппарату́ра счи́тывания и за́писи — read-write equipment
    тариро́вочная аппарату́ра — calibration equipment
    аппарату́ра телегра́фной свя́зи — telegraph equipment
    аппарату́ра телеизмере́ния — remote measuring [remote metering, telemetry] equipment
    аппарату́ра телеконтро́ля — telemetry and supervisory indication equipment
    телеметри́ческая аппарату́ра — remote measuring [remote metering, telemetry] equipment
    аппарату́ра телесигнализа́ции — supervisory [remote] indication equipment
    аппарату́ра телеуправле́ния — telecontrol equipment
    аппарату́ра телефо́нной свя́зи — telephone equipment
    аппарату́ра уплотне́ния — multiplexing equipment
    аппарату́ра управле́ния — control equipment
    аппарату́ра управле́ния, электро́нная — control electronics
    аппарату́ра фотографи́ческой звукоза́писи см. аппаратура оптической звукозаписи
    фототелегра́фная аппарату́ра — facsimile equipment
    цифрова́я аппарату́ра — digital equipment
    электро́нная аппарату́ра — electronic equipment

    Русско-английский политехнический словарь > аппаратура

  • 46 перенос

    carry вчт., ( на другую строку) folding, ( слова) hyphenation, junction хим., (клеток, вируса) passage, ( материала при трении) pickup, transfer, transference, ( заряда) transit, translation, transport, transportation, ( членов равенства) transposition
    * * *
    перено́с м.
    1. ( кинетические явления) transfer, transport
    2. мат., вчт. carry
    блоки́ровать перено́с вчт.suppress carry
    перено́с в какой-л. разря́д вчт.carry into a digit place
    перено́с возника́ет вчт.a carry is generated
    перено́с из какого-л. разря́да вчт. — carry out of [from] a digit place
    перено́с из ста́ршего разря́да добавля́ется к мла́дшему разря́ду вчт. — the carry out of the most significant position [digit] is added into the least signifiant position [digit]
    произвести́ перено́с вчт. — forward [execute] a carry
    перено́с вещества́ — mass transfer, mass transport
    перено́с ви́хря (ско́рости) — vorticity transfer
    группово́й перено́с вчт.block carry
    двои́чный перено́с — binary carry
    десяти́чный перено́с — decimal carry
    диффузио́нный перено́с
    1. физ. diffusive transfer
    2. кфт. transfer diffusion, image transfer by diffusion
    заде́ржанный перено́с вчт.delayed carry
    перено́с заря́да — charge transfer
    перено́с заря́да, эстафе́тный — relay-race charge transfer
    перено́с излуче́ния — radiative transport, radiation transfer
    каска́дный перено́с — cascaded [step-by-step] carry
    перено́с ко́пии полигр.laying
    перено́с ко́пии, мо́крый полигр.wet laying
    перено́с ко́пии, сухо́й полигр.dry laying
    лучи́стый перено́с — radiative transport, radiation transfer
    перено́с ма́ссы — mass transfer, mass transport
    перено́с материа́ла ( при трении твёрдых тел) — transfer of material
    межфа́зный перено́с — interphase transfer
    перено́с мета́лла — metal transfer
    молекуля́рный перено́с — molecular transport
    одновреме́нный перено́с — simultaneous carry
    перено́с осе́й (координа́т) — translation or (coordinate) axes
    перено́с радиоакти́вности — radioactivity transport
    сквозно́й перено́с вчт.ripple-through carry
    сквозно́й перено́с че́рез девя́тки ( в десятичной системе) — standing-on-nines carry
    сквозно́й перено́с че́рез едини́цы ( в двоичной системе) — standing-on-ones carry
    перено́с тепла́ — heat transfer, heat transport
    перено́с фотографи́ческого изображе́ния (на другу́ю подло́жку) — transfer process
    цикли́ческий перено́с вчт.end-around carry
    части́чный перено́с — partial carry
    перено́с частоты́ ( в другой диапазон) свз.frequency translation
    перено́с эне́ргии — transfer of energy
    перено́с эне́ргии, диффузио́нный — energy transfer by (a) diffusion (mechanism)
    перено́с эне́ргии, индукти́вно-резона́нсный — energy transfer by (an) inductive resonance (mechanism)
    перено́с эне́ргии, эксито́нный — energy transfer by excitons [by an exciton mechanism]

    Русско-английский политехнический словарь > перенос

  • 47 шаг огромной значимости

    фраз. a step of very great significance

    Although in many ways evolution may have been a continuous process, the origin of the first successful self-duplicating molecules, was surely a step of very great significance, for it bridges the gap between inorganic and organic evolution. — Хотя во многих отношениях эволюция была непрерывным процессом, происхождение первых успешных саморазмножающихся молекул несомненно было шагом огромной значимости, поскольку он представляет собой связь между неорганической и органической эволюцией.

    Дополнительный универсальный русско-английский словарь > шаг огромной значимости

  • 48 переговоры переговор·ы

    negotiations, talks; (обыкн. военные) parley

    вести переговоры — to be in negotiations, to carry on / to conduct / to pursue / to hold negotiations, to bargain, to negotiate; (о заключении соглашения и т.п.) to treat

    вести переговоры лично — to conduct negotiations in person / by a personal interview

    вести переговоры о мире — to carry on / to conduct peace negotiations / talks, to negotiate for peace

    вести переговоры от имени кого-л. — to act as smb.'s ambassador in negotiations

    вести переговоры под флагом перемирия, сдачи — to negotiate under a flag of truce or surrender

    возобновить переговоры — to renew / to resume / to reopen negotiations / talks

    завершить переговоры — to round off negotiations / talks, to bring the negotiations to a conclusion

    завести переговоры в тупик — to deadlock / to stalemate / to bog down negotiations, to lead negotiations into a blind alley

    затруднять проведение переговоров — to hamper / to obstruct / to impede / talks / negotiations

    затянуть переговоры — to drag out / to hold up / to protract negotiations / talks

    мешать проведению переговоров — to bedevil negotiations, to militate against negotiations

    начать переговоры — to start negotiations, to open discussions

    подорвать основу переговоров — to destroy the basis / foundation for negotiations

    прервать переговоры — to break off / to cut off / to interrupt negotiations

    продолжить переговоры — to resume negotiations / talks

    срывать / торпедировать переговоры — to ruin / to thwart / to torpedo / to subvert the talks

    в переговорах приняли участие с российской стороны... — attending the talks on the Russian side were...

    переговоры всё ещё продолжаются — the negotiations are still going on / under way

    переговоры вышли / вырвались из тупика — the talks have broken / escaped the deadlock

    переговоры зашли в тупик — negotiations / talks have been stalemated / bogged down / have come to a deadlock

    "глобальные переговоры" (по проблемам сырья, энергетики, торговли, экономического развития) — "global negotiations"

    закулисные переговоры — backstage / clandestine / secret negotiations / talks

    затянувшиеся переговоры — protracted discussions, long-stalled / extended negotiations

    зашедшие в тупик переговоры — deadlocked / stalled / stalemated talks / negotiations

    ожидаемые / предполагаемые переговоры — prospective talks

    поэтапные переговоры — stage-by-stage / step-by-step negotiations

    предварительные переговоры — preliminary negotiations, preliminaries

    предварительные переговоры, определяющие позиции сторон — exploratory talks

    трудные / тяжёлые переговоры — arduous / exacting talks

    окончание переговоров — completion of negotiations / talks

    переговоры, касающиеся космических и ядерных вооружений — talks on space and nuclear weapons

    переговоры о крупных, пятидесятипроцентных сокращениях — talks on large-scale, 50 per cent reductions

    переговоры по ограничению стратегических вооружений, ОСВ — Strategic Arms Limitation Talks, SALT

    переговоры по основным / существенным вопросам — substantive talks

    переговоры по разоружению — disarmament / arms negotiations

    переговоры по широкому кругу проблем — full-scale negotiations; wide ranging talks

    переговоры, проводимые в два этапа — two-phase negotiations

    переговоры, проводимые с перерывами — on-off talks разг.

    переговоры с позиции силы — negotiations "from strength"

    предмет и цели переговоров — the range and objectives of the talks, the subject and purpose of the negotiations

    прекращение переговоров — breakdown of / in negotiations

    путём переговоров — by means of / by negotiations

    раунд / тур переговоров — round of talks

    второй / третий раунд переговоров — second / third round of talks / negotiations

    очередной раунд / тур переговоров — new round of talks

    содержание, сроки и результаты переговоров — content, timing and outcome of negotiations

    стол переговоров — negotiating / bargaining table

    за столом переговоров — at the bargaining / negotiating table

    вернуть кого-л. за стол переговоров — to draw smb. back to the bargaining table

    сторона, участвующая в переговорах — party to negotiations

    ход переговоров — progress / course of negotiations

    Russian-english dctionary of diplomacy > переговоры переговор·ы

  • 49 ввод


    input
    (агрегата, блока, системы, цепи)
    кпеммы или другие точки агрегата (блока), на которые подается электрический сигнал (напряжение) или прикладываетея механическое усилие. — terminals ог other places where current, voltage, power or driving force may be applied to а circuit or device.
    - (клавиша ввода информпции, инерц. системы) — insert (1)
    "-" (клавиша ввода данных) — entry (ent)
    "-" (лампа сигнализации ввода информации в нав. сист. "омега") — enter, entry (ent)
    - антенныantenna lead-in
    проводник, соединяющий антенну c передатчиком или приемником. — the wire of other conductor connecting the antenna electrically with the transmitting and receiving equipment.
    - в эксплуатациюintroduction into service
    - гринвичского времени и даты полета — greenwich mean time/date entry
    - данных (подача сигналов на вход блока)data input
    - данных (при помощи задающего устройства) — data entry /insertion/ the data entry light illuminates during data insertion.
    - данных с помощью наборного поля — data entry /insertion/ from a keyboard
    - данных, трехступенчатый — three-step data entry

    enter (or insert) the data in a three-step process.
    - долготы (в курсовую енотему) — longitude data entry /insertion/
    - 3k (заданного курса в пнп)hdg select
    - индикации — data display entry /insertion/
    - индикации no кнопке "ввод" — data display insertion /entry/ by pressing the insert /entry/ button
    - информации в память вычислителя (клавиша пульта управления и индикации системы "омега") — enter, entry (ent)
    - исходного места самолетаinitial position entry
    - координат исходного места самолетаinitial position (coordinate) entry
    - координат ппм — waypoint coordinate entry /insertion/
    - места самолета (мс) (инерциальная система)position (pos) insertion
    - места самолета (мс) (сист. "омега") — position entry
    - начальных координат — initial position insert /insertion/
    - нового ппм — new waypoint (wpt) entry /insertion/
    - ортодромических координат — transverse (-pole) coordinate entry /insertion/
    -, ошибочный (к-л величины на наборном попе) — incorrect /illegal/ entry rotate the selector switch to cancel illegal entry
    - параметров ветра в рожимe счисления путиmanual wind entry (when) in dr mode
    - параметров, ручной — manual data insert /entry, loading/
    - парашютаparachute deployment
    выпуск купола и строп из ранца, — the withdrawal of the canopy and rigging lines from the pack.
    - парашютной системы, принудительный — parachute system static (link) deployment
    - повторный (данных при помощи клавиш) — reinsert, reentry
    - поправок в... — introduction of the correction into...
    - программы (в эвм)program input
    - разрешения неопределенности следования (заданному) маршруту, принудительный — manual initiation of lane ambiguity resolution (lar) routine
    - режима полета по условным меридианамgrid mode entry
    - текущего значения местопопожения (ла)present position entry (procedure)
    - тормозного парашютаdrag parachute deployment
    - участка маршрута (клавиша блока управления и индикации системы "омега") — leg chg (navigation leg change)
    - фактического путевого угла и путевой скорости — manual tk/gs entry
    -· широты (в курсовую систему) — latitude data entry /insertion/
    с момента в. в эксплуатацию — since first put /placed/ into service
    начинать в. данных с нулей — proceed the data with zeros
    прекращать в. данных — cancel data entry

    Русско-английский сборник авиационно-технических терминов > ввод

  • 50 контроль

    inspection, check(ing), test(ing) monitoring, supervision, sampling
    ▪ Do qualified mechanics always supervise work of less qualified personnel?
    контроль выборочный — random check, selection check, spot check, random sampling inspection
    контроль диагностический — diagnostic check, diagnostic checkout
    контроль качества технический — quality control, quality inspection
    ▪ It has been determined that the cited difficulties pertain to inadequate quality control.
    контроль повторный — check inspection, reinspection
    ▪ Upon receipt of equipment for storage, perform a systematic inspection and replace or repair all missing or broken parts.
    периодический контроль основных технических характеристик при эксплуатации и храненииperiodic performance check in operation and storage

    Поставки машин и оборудования. Русско-английский словарь > контроль

  • 51 национальное планирование

    1. Landesplanung

     

    национальное планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    national planning
    The step by step method and process of defining, developing and outlining various possible courses of actions to meet existing or future needs, goals and objectives for a country or a large body of people associated with a particular territory, often sharing similar ethnic backgrounds, customs and language. (Source: RHW / BLD)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > национальное планирование

  • 52 оптимизация

    1. Optimierung

     

    оптимизация
    Процесс отыскания варианта, соответствующего критерию оптимальности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    оптимизация
    1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
    [ http://slovar-lopatnikov.ru/]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    The quest for the optimum

    Вопрос оптимизации

    Throughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.

    На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.

    With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.

    На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.

    Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.

    Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,
    то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.

    This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.

    В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.

    Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.

    Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.

    Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.

    Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.

    The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.

    Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > оптимизация

  • 53 разрешение на планирование

    1. Planfeststellung

     

    разрешение на планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    planning permission
    An authorization, license or equivalent control document issued by a government agency that approves a step by step method and process of defining, developing and outlining various possible courses of action to meet existing or future needs, goals and objectives. (Source: TOE / ISEP)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-немецкий словарь нормативно-технической терминологии > разрешение на планирование

  • 54 национальное планирование

    1. national planning

     

    национальное планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    national planning
    The step by step method and process of defining, developing and outlining various possible courses of actions to meet existing or future needs, goals and objectives for a country or a large body of people associated with a particular territory, often sharing similar ethnic backgrounds, customs and language. (Source: RHW / BLD)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > национальное планирование

  • 55 оптимизация

    1. optimization

     

    оптимизация
    Процесс отыскания варианта, соответствующего критерию оптимальности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    оптимизация
    1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
    [ http://slovar-lopatnikov.ru/]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    The quest for the optimum

    Вопрос оптимизации

    Throughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.

    На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.

    With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.

    На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.

    Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.

    Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,
    то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.

    This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.

    В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.

    Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.

    Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.

    Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.

    Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.

    The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.

    Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > оптимизация

  • 56 разрешение на планирование

    1. planning permission

     

    разрешение на планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    planning permission
    An authorization, license or equivalent control document issued by a government agency that approves a step by step method and process of defining, developing and outlining various possible courses of action to meet existing or future needs, goals and objectives. (Source: TOE / ISEP)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-английский словарь нормативно-технической терминологии > разрешение на планирование

  • 57 национальное планирование

    1. planification nationale

     

    национальное планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    national planning
    The step by step method and process of defining, developing and outlining various possible courses of actions to meet existing or future needs, goals and objectives for a country or a large body of people associated with a particular territory, often sharing similar ethnic backgrounds, customs and language. (Source: RHW / BLD)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > национальное планирование

  • 58 оптимизация

    1. optimisation

     

    оптимизация
    Процесс отыскания варианта, соответствующего критерию оптимальности
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    оптимизация
    1. Процесс нахождения экстремума функции, т.е. выбор наилучшего варианта из множества возможных, процесс выработки оптимальных решений; 2. Процесс приведения системы в наилучшее (оптимальное) состояние. Иначе говоря, первое определение трактует термин «О.» как факт выработки и принятия оптимального решения (в широком смысле этих слов); мы выясняем, какое состояние изучаемой системы будет наилучшим с точки зрения предъявляемых к ней требований (критерия оптимальности) и рассматриваем такое состояние как цель. В этом смысле применяется также термин «субоптимизация» в случаях, когда отыскивается оптимум по какому-либо одному критерию из нескольких в векторной задаче оптимизации (см. Оптимальность по Парето, Векторная оптимизация). Второе определение имеет в виду процесс выполнения этого решения: т.е. перевод системы от существующего к искомому оптимальному состоянию. В зависимости от вида используемых критериев оптимальности (целевых функций или функционалов) и ограничений модели (множества допустимых решений) различают скалярную О., векторную О., мно¬гокритериальную О., стохастическую О (см. Стохастическое программирование), гладкую и негладкую (см. Гладкая функция), дискретную и непрерывную (см. Дискретность, Непрерывность), выпуклую и вогнутую (см. Выпуклость, вогнутость) и др. Численные методы О., т.е. методы построения алгоритмов нахождения оп¬тимальных значений целевых функций и соответствующих точек области допустимых значений — развитой отдел современной вычислительной математики. См. Оптимальная задача.
    [ http://slovar-lopatnikov.ru/]

    Параллельные тексты EN-RU из ABB Review. Перевод компании Интент

    The quest for the optimum

    Вопрос оптимизации

    Throughout the history of industry, there has been one factor that has spurred on progress more than any other. That factor is productivity. From the invention of the first pump to advanced computer-based optimization methods, the key to the success of new ideas was that they permitted more to be achieved with less. This meant that consumers could, over time and measured in real terms, afford to buy more with less money. Luxuries restricted to a tiny minority not much more than a generation ago are now available to almost everybody in developed countries, with many developing countries rapidly catching up.

    На протяжении всей истории промышленности существует один фактор, подстегивающий ее развитие сильнее всего. Он называется «производительность». Начиная с изобретения первого насоса и заканчивая передовыми методами компьютерной оптимизации, успех новых идей зависел от того, позволяют ли они добиться большего результата меньшими усилиями. На языке потребителей это значит, что они всегда хотят купить больше, а заплатить меньше. Меньше чем поколение назад, многие предметы считались роскошью и были доступны лишь немногим. Сейчас в развитых странах, число которых быстро увеличивается, подобное может позволить себе почти каждый.

    With industry and consumers expecting the trend towards higher productivity to continue, engineering companies are faced with the challenge of identifying and realizing further optimization potential. The solution often lies in taking a step back and looking at the bigger picture. Rather than optimizing every step individually, many modern optimization techniques look at a process as a whole, and sometimes even beyond it. They can, for example, take into account factors such as the volatility of fuel quality and price, the performance of maintenance and service practices or even improved data tracking and handling. All this would not be possible without the advanced processing capability of modern computer and control systems, able to handle numerous variables over large domains, and so solve optimization problems that would otherwise remain intractable.

    На фоне общей заинтересованности в дальнейшем росте производительности, машиностроительные и проектировочные компании сталкиваются с необходимостью определения и реализации возможностей по оптимизации своей деятельности. Для того чтобы найти решение, часто нужно сделать шаг назад, поскольку большое видится на расстоянии. И поэтому вместо того, чтобы оптимизировать каждый этап производства по отдельности, многие современные решения охватывают процесс целиком, а иногда и выходят за его пределы. Например, они могут учитывать такие факторы, как изменение качества и цены топлива, результативность ремонта и обслуживания, и даже возможности по сбору и обработке данных. Все это невозможно без использования мощных современных компьютеров и систем управления, способных оперировать множеством переменных, связанных с крупномасштабными объектами, и решать проблемы оптимизации, которые другим способом решить нереально.

    Whether through a stunning example of how to improve the rolling of metal, or in a more general overview of progress in optimization algorithms, this edition of ABB Review brings you closer to the challenges and successes of real world computer-based optimization tasks. But it is not in optimization and solving alone that information technology is making a difference: Who would have thought 10 years ago, that a technician would today be able to diagnose equipment and advise on maintenance without even visiting the factory? ABB’s Remote Service makes this possible. In another article, ABB Review shows how the company is reducing paperwork while at the same time leveraging quality control through the computer-based tracking of production. And if you believed that so-called “Internet communities” were just about fun, you will be surprised to read how a spin-off of this idea is already leveraging production efficiency in real terms. Devices are able to form “social networks” and so facilitate maintenance.

    Рассказывая об ошеломляющем примере того, как был усовершенствован процесс прокатки металла, или давая общий обзор развития алгоритмов оптимизации, этот выпуск АББ Ревю знакомит вас с практическими задачами и достигнутыми успехами оптимизации на основе компьютерных технологий. Но информационные технологии способны не только оптимизировать процесс производства. Кто бы мог представить 10 лет назад, что сервисный специалист может диагностировать производственное оборудование и давать рекомендации по его обслуживанию, не выходя из офиса? Это стало возможно с пакетом Remote Service от АББ. В другой статье этого номера АББ Ревю рассказывается о том, как компания смогла уменьшить бумажный документооборот и одновременно повысить качество управления с помощью компьютерного контроля производства. Если вы считаете, что так называемые «интернет-сообщества» служат только для развлечения,
    то очень удивитесь, узнав, что на основе этой идеи можно реально повысить производительность. Формирование «социальной сети» из автоматов значительно облегчает их обслуживание.

    This edition of ABB Review also features several stories of service and consulting successes, demonstrating how ABB’s expertise has helped customers achieve higher levels of productivity. In a more fundamental look at the question of what reliability is really about, a thought-provoking analysis sets out to find the definition of that term that makes the greatest difference to overall production.

    В этом номере АББ Ревю есть несколько статей, рассказывающих об успешных решениях по организации дистанционного сервиса и консультирования. Из них видно, как опыт АББ помогает нашим заказчикам повысить производительность своих предприятий. Углубленные размышления о самой природе термина «надежность» приводят к парадоксальным выводам, способным в корне изменить представления об оптимизации производства.

    Robots have often been called “the extended arm of man.” They are continuously advancing productivity by meeting ever-tightening demands on precision and efficiency. This edition of ABB Review dedicates two articles to robots.

    Робот – это могучее «продолжение» человеческой руки. Применение роботов способствует постоянному повышению производительности, поскольку они отвечают самым строгим требованиям точности и эффективности. Две статьи в этом номере АББ Ревю посвящены роботам.

    Further technological breakthroughs discussed in this issue look at how ABB is keeping water clean or enabling gas to be shipped more efficiently.

    Говоря о других технологических достижениях, обсуждаемых на страницах журнала, следует упомянуть о том, как компания АББ обеспечивает чистоту воды, а также более эффективную перевозку сжиженного газа морским транспортом.

    The publication of this edition of ABB Review is timed to coincide with ABB Automation and Power World 2009, one of the company’s greatest customer events. Readers visiting this event will doubtlessly recognize many technologies and products that have been covered in this and recent editions of the journal. Among the new products ABB is launching at the event is a caliper permitting the flatness of paper to be measured optically. We are proud to carry a report on this product on the very day of its launch.

    Публикация этого номера АББ Ревю совпала по времени с крупнейшей конференцией для наших заказчиков «ABB Automation and Power World 2009». Читатели, посетившие ее, смогли воочию увидеть многие технологии и изделия, описанные в этом и предыдущих выпусках журнала. Среди новинок, представленных АББ на этой конференции, был датчик, позволяющий измерять толщину бумаги оптическим способом. Мы рады сообщить, что сегодня он готов к выпуску.

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > оптимизация

  • 59 разрешение на планирование

    1. permis d'aménagement

     

    разрешение на планирование

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    EN

    planning permission
    An authorization, license or equivalent control document issued by a government agency that approves a step by step method and process of defining, developing and outlining various possible courses of action to meet existing or future needs, goals and objectives. (Source: TOE / ISEP)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Русско-французский словарь нормативно-технической терминологии > разрешение на планирование

  • 60 приём

    1) General subject: acceptance, administration, admission, admittance, appointment (у врача), bout, consultation, crush (гостей), device, dodge, dose, draught, engagement, enlistment, enrolment (в члены организации, в школу), entertainment (гостей), expedient, guest-night, intake, levee (гостей), method, movement, procedure, public function (часто public или social function), quarter, receiving (сигналов), receiving line, reception, recipiency, sitting, social, social function (официальный приём гостей), stroke, stroke-oar, surgery (у врача), tack, taking, welcome, welcome (гостя), wingding, audience, (при переговорах по рации) 10-4, ten-four (http://www.urbandictionary.com/define.php?term=10-4), sleight (в борьбе, в самообороне), skill (в комп. играх. - боевой прием), court (светский), gathering (собрание), admitting, ruse, pattern, know-how (some contexts), gimmick, presort
    2) Aviation: aural reception, over
    3) Medicine: attendance (у врача), maneuver, practice, (препарата) contact
    4) Colloquial: function, gadget
    5) Sports: return (мяча)
    6) Military: modality, (строевой) movement, pickup, reception (пополнений), social gathering
    7) Engineering: detection (излучения), manner, process, receipt, receiving transmission, rx
    8) Agriculture: acceptance (напр. пищи), practice (ы)
    9) Construction: observation, (рабочий) technique
    10) Mathematics: mode, stage, step, stratagem, subterfuge
    11) Railway term: after admission
    12) Law: technique
    14) Accounting: admission (в товарищество; partnership; Противоположным является withdrawal выход (из товарищества))
    15) Architecture: way
    16) Diplomatic term: equivocation, greeting, ploy, reception (гостей, официальных представителей и т.п.), stunt, welcome (гостей)
    18) Telecommunications: stacking
    19) Textile: taking-in
    20) Jargon: flap, shindig
    21) Information technology: accepting, hook, recept, registration
    22) Oil: suction (насоса), taking over, trick
    23) Sociology: party
    24) Astronautics: receive
    25) Geophysics: recording
    27) Advertising: enrollment
    28) Business: guest night
    29) Network technologies: Receive data (Стандартный аппаратный сигнал RS-232C для переноса данных от одного устройства к другому. Обозначается также Rx или Rxd), hookup
    30) Polymers: collection (волокна)
    31) Automation: (технологический) process
    32) Chemical weapons: charging, loading, techniques
    33) Makarov: administration (лекарственного средства), admission (в организацию, учебное заведение и т.п.), adoption, approach, dose (лекарственного средства), enrollment (в члены организации, в школу и т.п.), intake (лекарственного средства), maneuver (процедура, манёвр), reception (больных), recipience, social (членов клуба, общества), strategy, twist, whing-ding
    34) Security: reception (информации; сигналов)

    Универсальный русско-английский словарь > приём

См. также в других словарях:

  • step — [step] n. [ME steppe < OE stepe, akin to Ger stapf < IE base * steb(h) , post (> STAMP): basic sense “to stamp feet”] 1. the act of moving and placing the foot forward, backward, sideways, up, or down, as in walking, dancing, or climbing …   English World dictionary

  • step-by-step — adjective one thing at a time (Freq. 1) • Syn: ↑bit by bit, ↑in small stages, ↑piecemeal, ↑stepwise • Similar to: ↑gradual * * * | ̷ ̷(ˌ) ̷ ̷| ̷ ̷ adjective : marked by successive degrees u …   Useful english dictionary

  • step — stepless, adj. steplike, adj. /step/, n., v., stepped, stepping. n. 1. a movement made by lifting the foot and setting it down again in a new position, accompanied by a shifting of the weight of the body in the direction of the new position, as… …   Universalium

  • step by step — adverb a) from one stage to the next in sequence We were shown the process step by step. b) gradually and steadily …   Wiktionary

  • step*/*/*/ — [step] noun [C] I 1) a movement made by putting one foot in front of the other, or the sound that your feet make while you are walking I could hear the steps coming closer.[/ex] The postbox is just a few steps from my front door.[/ex] Tom took a… …   Dictionary for writing and speaking English

  • Process architecture — is the structural design of general process systems and applies to fields such as computers (software, hardware, networks, etc.), business processes (enterprise architecture, policy and procedures, logistics, project management, etc.), and any… …   Wikipedia

  • process — pro·cess / prä ˌses, prō / n 1: a continuous operation, art, or method esp. in manufacture whoever invents or discovers any new and useful process...may obtain a patent therefor U.S. Code 2 a: procedure (1) see also …   Law dictionary

  • Process integration — is a term in chemical engineering which has two possible meanings.1. A holistic approach to process design which considers the interactions between different unit operations from the outset, rather than optimising them separately. This can also… …   Wikipedia

  • Step-growth polymerization — is a polymerization process that involves a chemical reaction between multifunctional monomer molecules. In a step growth reaction, the growing chains may react with each other to form even longer chains. This applies to chains of all lengths.… …   Wikipedia

  • Process optimization — is the discipline of adjusting a process so as to optimize some specified set of parameters without violating some constraint. The most common goals are minimizing cost, maximizing throughput, and/or efficiency. This is one of the major… …   Wikipedia

  • Process-centered design — (PCD) is a design methodology, which proposes a business centric approach for designing user interfaces. Because of the multi stage business analysis steps involved right from the beginning of the PCD life cycle, it is believed to achieve the… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»